Part Number Hot Search : 
CXA1201Q 6SMB27A NP35N MC75C MEH14ZAA DDZX10C M74HC4 XC4020E
Product Description
Full Text Search
 

To Download MRF6P3300HR5 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mrf6p3300hr3 MRF6P3300HR5 1 rf device data freescale semiconductor rf power field effect transistor n - channel enhancement - mode lateral mosfets designed for broadband commercial and industrial applications with frequencies from 470 to 860 mhz. the high gain and broadband performance of this device make it ideal for large - signal, common - source amplifier applications in 32 volt analog or digital television transmitter equipment. ? typical narrowband two - tone performance @ 860 mhz: v dd = 32 volts, i dq = 1600 ma, p out = 270 watts pep power gain ? 20.2 db drain efficiency ? 44.1% imd ? - 30.8 dbc ? typical narrowband dvbt ofdm performance @ 860 mhz: v dd = 32 volts, i dq = 1600 ma, p out = 60 watts avg., 8k mode, 64 qam power gain ? 20.4 db drain efficiency ? 29% acpr @ 3.9 mhz offset ? - 57 dbc @ 20 khz bandwidth ? capable of handling 10:1 vswr, @ 32 vdc, 860 mhz, 300 watts cw output power features ? characterized with series equivalent large - signal impedance parameters ? internally matched for ease of use ? designed for push - pull operation only ? qualified up to a maximum of 32 v dd operation ? integrated esd protection ? lower thermal resistance package ? low gold plating thickness on leads, 40 nominal. ? rohs compliant ? in tape and reel. r3 suffix = 250 units per 56 mm, 13 inch reel. r5 suffix = 50 units per 56 mm, 13 inch reel. table 1. maximum ratings rating symbol value unit drain- source voltage v dss - 0.5, +68 vdc gate - source voltage v gs - 0.5, +12 vdc total device dissipation @ t c = 25 c derate above 25 c p d 761 4.3 w w/ c storage temperature range t stg - 65 to +150 c case operating temperature t c 150 c operating junction temperature t j 200 c table 2. thermal characteristics characteristic symbol value (1,2) unit thermal resistance, junction to case case temperature 80 c, 300 w cw case temperature 82 c, 220 w cw case temperature 79 c, 100 w cw case temperature 81 c, 60 w cw r jc 0.23 0.24 0.27 0.27 c/w 1. mttf calculator available at http://www.freescale.com/rf . select tools/software/application software/calculators to access the mttf calculators by product. 2. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes - an1955. document number: mrf6p3300h rev. 1, 5/2006 freescale semiconductor technical data mrf6p3300hr3 MRF6P3300HR5 470 - 860 mhz, 300 w, 32 v lateral n - channel rf power mosfets case 375g - 04, style 1 ni - 860c3 ? freescale semiconductor, inc., 2006. all rights reserved.
2 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 table 3. esd protection characteristics test methodology class human body model (per jesd22 - a114) 3b (minimum) machine model (per eia/jesd22 - a115) c (minimum) charge device model (per jesd22 - c101) iv (minimum) table 4. electrical characteristics (t c = 25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics (1) zero gate voltage drain leakage current (4) (v ds = 68 vdc, v gs = 0 vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (4) (v ds = 32 vdc, v gs = 0 vdc) i dss ? ? 1 adc gate - source leakage current (v gs = 5 vdc, v ds = 0 vdc) i gss ? ? 1 adc on characteristics (1) gate threshold voltage (v ds = 10 vdc, i d = 350 adc) v gs(th) 1 2.2 3 vdc gate quiescent voltage (v ds = 32 vdc, i d = 1600 madc, measured in functional test) v gs(q) 2 2.8 4 vdc drain- source on - voltage (v gs = 10 vdc, i d = 2.4 adc) v ds(on) ? 0.22 0.3 vdc forward transconductance (v ds = 10 vdc, i d = 2.4 adc) g fs ? 7.4 ? s dynamic characteristics (1,2) reverse transfer capacitance (v ds = 32 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c rss ? 1.4 ? pf functional tests (3) (in freescale narrowband test fixture, 50 ohm system) v dd = 32 vdc, i dq = 1600 ma, p out = 270 w pep, f1 = 857 mhz, f2 = 863 mhz power gain g ps 19 20.2 23 db drain efficiency d 41 44.1 ? % intermodulation distortion imd ? - 30.8 -28 dbc input return loss irl ? -24 -9 db p out @ 1 db compression point, cw (f = 860 mhz) p1db ? 320 ? w 1. each side of the device measured separately. 2. part internally matched both on input and output. 3. measurement made with device in push - pull configuration. 4. drains are tied together internally as this is a total device value.
mrf6p3300hr3 MRF6P3300HR5 3 rf device data freescale semiconductor figure 1. 820 - 900 mhz narrowband test circuit schematic z10, z11 1.054 x 0.150 microstrip z12, z13 0.225 x 0.507 microstrip z14, z15 0.440 x 0.335 microstrip z16, z17 0.123 x 0.140 microstrip pcb arlon gx - 0300- 55 - 22, 0.030 , r = 2.5 z1, z18 0.401 x 0.810 microstrip z2, z3 0.563 x 0.810 microstrip z4, z5 1.643 x 0.058 microstrip z6, z7 0.416 x 0.727 microstrip z8, z9 0.191 x 0.507 microstrip rf input c2 r3 c1 c3 v bias z6 c4 z7 c5 z1 dut c8 c9 r2 b2 v supply z8 z9 z13 z15 z17 c13 c24 c19 v supply rf output z18 v bias z4 z5 z2 z3 z11 z10 + + + c7 r1 b1 c14 c12 z12 z14 z16 c20 c22 + c21 c23 c15 + c16 c18 + c17 c10 c11 c6 coax1 coax2 coax3 coax4 table 5. 820 - 900 mhz narrowband test circuit component designations and values part description part number manufacturer b1, b2 ferrite beads, short 2743019447 fair- rite c1, c9 1.0 f, 50 v tantulum chip capacitors t491c105k050as kemet c2, c7, c17, c21 0.1 f, 50 v chip capacitors cdr33bx104akws kemet c3, c8, c16, c20 1000 pf 100b chip capacitors 100b102jp50x atc c4, c5, c13, c14 100 pf 100b chip capacitors 100b101jp500x atc c6, c12 8.2 pf 600b chip capacitors 600b8r2bt250xt atc c10 9.1 pf 600b chip capacitor 600b9r1bt250xt atc c11 1.8 pf 600b chip capacitor 600b1r8bt250xt atc c15, c19 47 f, 50 v electrolytic capacitors mvk50vc47rm8x10tp nippon c18, c22 470 f, 63 v electrolytic capacitors sme63v471m12x25ll united chemi - con c23, c24 22 pf 600b chip capacitors 600b220ft250xt atc coax1, 2, 3, 4 50 , semi rigid coax, 2.06 long ut - 141a- tp micro - coax r1, r2 10 , 1/8 w chip resistors (1206) crcw1206100j dale/vishay r3 1 k , 1/8 w chip resistor (1206) crcw1206102j dale/vishay
4 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 figure 2. 820 - 900 mhz narrowband test circuit component layout cut out area c1 b1 r1 r3 c2 c3 c4 c5 c6 c9 c7 c8 b2 r2 c19 c24 c20 c21 c22 c10 c11 c12 c13 c14 c23 c15 c16 c17 c18 mrf6p9220, rev. 2 coax3 coax4 coax1 coax2 v gg v gg v dd v dd
mrf6p3300hr3 MRF6P3300HR5 5 rf device data freescale semiconductor typical narrowband characteristics g ps , power gain (db) irl, input return loss (db) acpr (dbc) ?25 ?10 ?20 900 820 irl g ps acpr f, frequency (mhz) figure 3. single - carrier ofdm broadband performance @ 60 watts avg. 890 880 870 860 850 840 830 21 20 ?65 31 27 ?50 ?55 ?60 d , drain efficiency (%) d 18.5 18 17.5 17 20.5 19.5 19 29 25 ?45 ?5 ?15 v dd = 32 vdc, p out = 60 w (avg.) i dq = 1600 ma, 8k mode ofdm 64 qam data carrier modulation 5 symbols g ps , power gain (db) irl, input return loss (db) acpr (dbc) ?25 ?10 ?20 900 820 irl g ps acpr f, frequency (mhz) figure 4. single - carrier ofdm broadband performance @ 120 watts avg. 890 880 870 860 850 840 830 21 20 ?53 44 40 ?47 ?49 ?51 d , drain efficiency (%) d 18.5 18 17.5 17 20.5 19.5 19 42 38 ?45 ?5 ?15 figure 5. two - tone power gain versus output power 17.5 21.5 5 i dq = 800 ma 2000 ma p out , output power (watts) pep 21 20 19 100 600 g ps , power gain (db) 18 1600 ma 20.5 19.5 18.5 10 1200 ma 2400 ma v dd = 32 vdc f1 = 857 mhz, f2 = 863 mhz two?tone measurements, 6 mhz tone spacing figure 6. third order intermodulation distortion versus output power p out , output power (watts) pep 100 ?20 ?30 ?40 ?50 ?60 10 intermodulation distortion (dbc) imd, third order ?10 i dq = 2400 ma 800 ma 2000 ma 1200 ma 1600 ma v dd = 32 vdc, f1 = 857 mhz, f2 = 863 mhz two?tone measurements, 6 mhz tone spacing 600 v dd = 32 vdc, p out = 120 w (avg.) i dq = 1600 ma, 8k mode ofdm 64 qam data carrier modulation, 5 symbols 5
6 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 typical narrowband characteristics figure 7. intermodulation distortion products versus output power ?70 ?10 10 7th order p out , output power (watts) pep v dd = 32 vdc, i dq = 1600 ma, f1 = 857 mhz f2 = 863 mhz, two?tone measurements 3rd order ?20 ?30 ?40 ?50 100 600 imd, intermodulation distortion (dbc) ?60 5th order 5 figure 8. intermodulation distortion products versus tone spacing @ 860 mhz 10 ?55 ?20 0.01 7th order two?tone spacing (mhz) v dd = 32 vdc, p out = 270 w (pep), i dq = 1600 ma two?tone measurements, f = 860 mhz 5th order 3rd order ?25 ?30 ?40 ?50 140 imd, intermodulation distortion (dbc) 0.1 ?35 ?45 figure 9. pulse cw output power versus input power 44 64 34 p in , input power (dbm) v dd = 32 vdc, i dq = 1600 ma pulsed cw, 8 sec(on), 1 msec(off) f = 860 mhz 61 59 57 52 36 38 40 42 actual ideal 63 53 32 p out , output power (dbm) 55 60 58 56 54 33 35 37 39 41 43 62 p1db = 55.20 dbm (330.94 w) p3db = 55.87 dbm (386.48 w) p6db = 56.28 dbm (424.54 w) acpr, adjacent channel power ratio (dbc) figure 10. single - carrier dvbt ofdm acpr, power gain and drain efficiency versus output power 15 ?64 p out , output power (watts) avg. 45 ?40 30 20 ?44 ?48 ?60 30 40 100 ?56 d , drain efficiency (%), g ps , power gain (db) g ps acpr v dd = 32 vdc, i dq = 1600 ma, f = 860 mhz 8k mode ofdm, 64 qam data carrier modulation, 5 symbols 90 ?30  c 40 50 60 70 80 25  c 20 200 35 25 ?52 ?30  c 25  c 85  c t c = 85  c 25  c d
mrf6p3300hr3 MRF6P3300HR5 7 rf device data freescale semiconductor typical narrowband characteristics 800 16 23 0 70 p out , output power (watts) cw figure 11. power gain and drain efficiency versus cw output power v dd = 32 vdc i dq = 1600 ma f = 860 mhz 100 10 21 20 19 18 17 50 40 30 20 10 d , drain efficiency (%) g ps d g ps , power gain (db) 5 t c = ?30  c 85  c 25  c ?30  c 22 60 25  c 85  c figure 12. power gain versus output power p out , output power (watts) cw v dd = 12 v g ps , power gain (db) 400 16.5 21.5 50 20.5 17.5 200 18 18.5 24 v i dq = 1600 ma f = 860 mhz 20 v 16 v 32 v 0 19.5 100 150 250 300 350 28 v 17 19 20 21 210 10 10 90 t j , junction temperature ( c) figure 13. mttf factor versus junction temperature this above graph displays calculated mttf in hours x ampere 2 drain current. life tests at elevated temperatures have correlated to better than 10% of the theoretical prediction for metal failure. divide mttf factor by i d 2 for mttf in a particular application. 10 8 10 7 120 140 160 180 200 mttf factor (hours x amps 2 ) 10 9 100 190 170 150 130 110
8 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 digital test signals 12 0.0001 100 0 peak?to?average (db) figure 14. single - carrier dvtb ofdm 10 1 0.1 0.01 0.001 2468 probability (%) 8k mode dvtb ofdm 64 qam data carrier modulation 5 symbols 5 ?20 ?5 7.61 mhz f, frequency (mhz) figure 15. 8k mode dvbt ofdm spectrum ?30 ?40 ?50 ?90 ?70 ?80 ?100 ?110 ?60 ?4 ?3 ?2 ?1 0 1 2 3 4 20 khz bw (db) 20 khz bw 10 acpr measured at 3.9 mhz offset from center frequency imru 4.0 ?100 ?10 0 imrl f, frequency (mhz) reference point ?20 ?30 ?40 ?50 ?60 ?70 ?80 ?90 0.8 ?0.8 1.6 2.4 3.2 ?4.0 ?3.2 ?2.4 ?1.6 3.25 mhz offset 3.25 mhz offset (db) 0.0001 100 0 peak?to?average (db) figure 16. single - carrier atsc 8vsb 10 1 0.1 0.01 0.001 2468 probability (%) atsc 8vsb 1357 figure 17. atsc 8vsb spectrum
mrf6p3300hr3 MRF6P3300HR5 9 rf device data freescale semiconductor f mhz z source z load 830 845 860 4.52 - j6.73 3.89 - j5.81 4.22 - j6.38 4.89 - j1.35 5.06 - j1.01 5.18 - j0.58 v dd = 32 vdc, i dq = 1600 ma, p out = 270 w pep z source = test circuit impedance as measured from gate to gate, balanced configuration. z load = test circuit impedance as measured from drain to drain, balanced configuration. z source z load input matching network device under test output matching network ? ?+ + figure 18. 820 - 900 mhz narrowband series equivalent source and load impedance z o = 10 f = 890 mhz f = 830 mhz z load z source 875 890 3.39 - j4.32 3.54 - j5.10 5.27 - j0.11 5.36 + j0.43 f = 830 mhz f = 890 mhz
10 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 figure 19. 470 - 860 mhz broadband test circuit schematic rf input r1 c26 v bias c1 z1 rf output z2 r2 b1 coax1 coax2 c28 + z3 c2 z4 z5 coax3 coax4 c9 z8 z9 z10 z11 c10 z12 z13 c3 + c5 c7 z6 c27 v bias r3 b2 c29 + c4 + c6 c8 z7 c18 c20 z26 z24 coax7 coax8 c14 + z25 c21 z22 z23 coax5 coax6 c13 z18 z19 z16 z17 c11 z14 z15 dut z20 c12 c16 c22 + c24 v supply c19 c15 + z21 c17 c23 + c25 v supply z14, z15 0.276 x 0.420 microstrip z16, z17 0.072 x 0.420 microstrip z18, z19 0.072 x 0.031 microstrip z20, z21 1.404 x 0.141 microstrip z22, z23 0.363 x 0.214 microstrip z24, z25 0.139 x 0.214 microstrip pcb arlon gx - 0300- 55 - 22, 0.030 , r = 2.5 z1, z26 0.351 x 0.081 microstrip z2, z3 0.139 x 0.214 microstrip z4, z5 0.364 x 0.214 microstrip z6, z7 1.154 x 0.051 microstrip z8, z9 0.086 x 0.100 microstrip z10, z11 0.184 x 0.802 microstrip z12, z13 0.164 x 0.802 microstrip
mrf6p3300hr3 MRF6P3300HR5 11 rf device data freescale semiconductor table 6. 470 - 860 mhz broadband test circuit component designations and values part description part number manufacturer b1, b2 ferrite beads, short 2743019447 fair- rite c1, c2, c20, c21 43 pf 600b chip capacitors 700b430fw500xt atc c3, c4, c14, c15 100 f, 50 v electrolytic capacitors 515d107m050bb6a vishay c5, c6, c16, c17 220 nf, 100 v chip capacitors c1812c224k5rac kemet c7, c8, c18, c19 0.01 f, 100 v chip capacitors c1210c103j1rac kemet c9, c13 0.8 - 8.0 pf variable capacitors, gigatrim 27291sl johanson c10 15 pf 600b chip capacitor 600s150ft250xt atc c11 16 pf 600b chip capacitor 600b160ft250xt atc c12 4.3 pf 600b chip capacitor 600b4r3bt250xt atc c22, c23 470 f, 63 v electrolytic capacitors naczf471m63v nippon c24, c25, c26, c27 0.1 f, 50 v chip capacitors cdr33bx104akws kemet c28, c29 10 f, 50 v electrolytic capacitors ece - v1ha100sp panasonic coax1, 2, 7, 8 50 , semi rigid coax, 3.00 long ut - 141c- 50- sp micro - coax coax3, 4, 5, 6 25 , semi rigid coax, 3.00 long ut - 141c- 25 micro - coax r1 1 k , 1/8 w resistor (1206) crcw1206102j dale/vishay r2, r3 10 , 1/8 w resistors (1206) crcw1206100j dale/vishay figure 20. 470 - 860 mhz broadband test circuit component layout r1 mrf6p93300 c28 c26 coax1 rev. 3 c3 c5 c7 c9 c10 c1 c2 c4 c8 c6 c27 c29 r3 b2 v gg v gg v dd c22 coax5 c24 c14 c19 c18 c12 c11 c13 c20 c21 c15 v dd c25 c23 cut out area coax2 coax3 coax4 r2 b1 coax7 coax8 coax6 c18 c16 c17
12 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 typical two - tone broadband characteristics imd, intermodulation distortion (dbc) figure 21. two - tone broadband performance @ p out = 270 watts pep 16 ?48 f, frequency (mhz) 48 ?24 36 24 ?27 ?33 ?45 400 ?42 d , drain efficiency (%), g ps , power gain (db) g ps imd 44 900 40 32 ?39 d 500 600 700 800 v dd = 32 vdc, p out = 270 w (pep), i dq = 1600 ma two?tone measurements, 6 mhz tone spacing 28 20 ?30 ?36
mrf6p3300hr3 MRF6P3300HR5 13 rf device data freescale semiconductor typical two - tone broadband characteristics figure 22. two - tone power gain versus output power @ 473 mhz 21 24.5 5 i dq = 2400 ma 2000 ma p out , output power (watts) pep 24 23 22 100 1000 g ps , power gain (db) 1600 ma 23.5 22.5 21.5 10 1200 ma 800 ma figure 23. two - tone power gain versus output power @ 560 mhz 20 23.5 5 i dq = 2400 ma 2000 ma p out , output power (watts) pep 23 22 21 100 1000 g ps , power gain (db) 1600 ma 22.5 21.5 20.5 10 1200 ma 800 ma figure 24. two - tone power gain versus output power @ 660 mhz 18.5 21 5 i dq = 2400 ma 2000 ma p out , output power (watts) pep 20.5 19 100 1000 g ps , power gain (db) 1600 ma 20 19.5 10 1200 ma 800 ma figure 25. two - tone power gain versus output power @ 760 mhz 16.5 19 5 i dq = 2400 ma 2000 ma p out , output power (watts) pep 18.5 17 100 1000 g ps , power gain (db) 1600 ma 18 17.5 10 1200 ma 800 ma v dd = 32 vdc, f1 = 757 mhz, f2 = 763 mhz two?tone measurements, 6 mhz tone spacing v dd = 32 vdc, f1 = 657 mhz, f2 = 663 mhz two?tone measurements, 6 mhz tone spacing figure 26. two - tone power gain versus output power @ 857 mhz 17.5 20 5 i dq = 2400 ma 2000 ma p out , output power (watts) pep 19.5 18 100 1000 g ps , power gain (db) 1600 ma 19 18.5 10 1200 ma 800 ma v dd = 32 vdc, f1 = 854 mhz, f2 = 860 mhz two?tone measurements, 6 mhz tone spacing v dd = 32 vdc, f1 = 470 mhz, f2 = 476 mhz two?tone measurements, 6 mhz tone spacing v dd = 32 vdc, f1 = 557 mhz, f2 = 563 mhz two?tone measurements, 6 mhz tone spacing
14 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 typical two - tone broadband characteristics figure 27. third order intermodulation distortion versus output power @ 473 mhz p out , output power (watts) pep 100 ?30 ?35 ?40 ?50 ?55 10 intermodulation distortion (dbc) imd, third order ?25 i dq = 800 ma 2000 ma 1200 ma 1600 ma 1000 ?45 2400 ma figure 28. third order intermodulation distortion versus output power @ 560 mhz p out , output power (watts) pep 100 ?30 ?35 ?40 ?50 ?55 10 intermodulation distortion (dbc) imd, third order ?25 i dq = 800 ma 2000 ma 1200 ma 1600 ma v dd = 32 vdc, f1 = 557 mhz, f2 = 563 mhz two?tone measurements, 6 mhz tone spacing 1000 ?45 2400 ma figure 29. third order intermodulation distortion versus output power @ 660 mhz p out , output power (watts) pep 100 ?30 ?35 ?40 ?50 ?55 10 intermodulation distortion (dbc) imd, third order ?25 i dq = 800 ma 2000 ma 1200 ma 1600 ma v dd = 32 vdc, f1 = 657 mhz, f2 = 663 mhz two?tone measurements, 6 mhz tone spacing 1000 ?45 2400 ma figure 30. third order intermodulation distortion versus output power @ 760 mhz p out , output power (watts) pep 100 ?30 ?35 ?40 ?50 ?55 10 intermodulation distortion (dbc) imd, third order ?25 i dq = 800 ma 2000 ma 1200 ma 1600 ma v dd = 32 vdc, f1 = 757 mhz, f2 = 763 mhz two?tone measurements, 6 mhz tone spacing 1000 ?45 2400 ma v dd = 32 vdc, f1 = 470 mhz, f2 = 476 mhz two?tone measurements, 6 mhz tone spacing figure 31. third order intermodulation distortion versus output power @ 857 mhz p out , output power (watts) pep 100 ?30 ?35 ?40 ?50 ?55 10 intermodulation distortion (dbc) imd, third order ?25 i dq = 800 ma 2000 ma 1200 ma 1600 ma v dd = 32 vdc, f1 = 854 mhz, f2 = 860 mhz two?tone measurements, 6 mhz tone spacing 1000 ?45 2400 ma
mrf6p3300hr3 MRF6P3300HR5 15 rf device data freescale semiconductor typical two - tone broadband characteristics figure 32. intermodulation distortion products versus tone spacing @ 470 mhz 10 ?60 0 0.1 7th order two?tone spacing (mhz) v dd = 32 vdc, p out = 270 w (pep), i dq = 1600 ma two?tone measurements f1 = 470 mhz, f2 = 470 mhz + tone spacing 5th order 3rd order ?10 ?20 ?40 ?50 1 100 imd, intermodulation distortion (dbc) ?30 figure 33. intermodulation distortion products versus tone spacing @ 560 mhz 10 ?60 0 0.01 7th order two?tone spacing (mhz) v dd = 32 vdc, p out = 270 w (pep), i dq = 1600 ma two?tone measurements, f = 560 mhz 5th order 3rd order ?10 ?20 ?40 ?50 1 100 imd, intermodulation distortion (dbc) ?30 0.1 figure 34. intermodulation distortion products versus tone spacing @ 660 mhz 10 ?60 0 0.01 7th order two?tone spacing (mhz) v dd = 32 vdc, p out = 270 w (pep), i dq = 1600 ma two?tone measurements, f = 660 mhz 5th order 3rd order ?10 ?20 ?40 ?50 1 100 imd, intermodulation distortion (dbc) ?30 0.1 figure 35. intermodulation distortion products versus tone spacing @ 760 mhz 10 ?60 0 0.01 7th order two?tone spacing (mhz) v dd = 32 vdc, p out = 270 w (pep), i dq = 1600 ma two?tone measurements, f = 760 mhz 5th order 3rd order ?10 ?20 ?40 ?50 1 100 imd, intermodulation distortion (dbc) ?30 0.1 figure 36. intermodulation distortion products versus tone spacing @ 860 mhz 10 ?60 0 0.1 7th order two?tone spacing (mhz) v dd = 32 vdc, p out = 270 w (pep), i dq = 1600 ma two?tone measurements, 6 mhz tone spacing f1 = 860 mhz ? tone spacing, f2 = 860 mhz 5th order 3rd order ?10 ?20 ?40 ?50 1 100 imd, intermodulation distortion (dbc) ?30
16 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 typical dvbt ofdm broadband characteristics acpr, adjacent channel power ratio (dbc) figure 37. single - carrier ofdm broadband performance @ 60 watts avg. 18 ?58 f, frequency (mhz) 30 ?52 24 20 ?53 ?54 ?57 400 ?56 d , drain efficiency (%), g ps , power gain (db) g ps acpr 28 900 26 22 ?55 d 500 600 700 800 figure 38. single - carrier dvbt ofdm power gain versus output power 18 24 3 f = 560 mhz p out , output power (watts) avg. 23 21 20 100 200 g ps , power gain (db) 22 19 10 660 mhz v dd = 32 vdc, i dq = 1600 ma 8k mode ofdm, 64 qam data carrier modulation, 5 symbols 760 mhz 860 mhz d , drain efficiency (%) figure 39. single - carrier dvbt ofdm drain efficiency versus output power 5 45 3 p out , output power (watts) avg. 40 30 25 100 200 35 20 10 v dd = 32 vdc, i dq = 1600 ma 8k mode ofdm, 64 qam data carrier modulation, 5 symbols 15 10 f = 660 mhz 560 mhz 760 mhz 860 mhz acpr, adjacent channel power ratio (dbc) figure 40. single - carrier dvbt ofdm acpr versus output power ?65 ?45 3 p out , output power (watts) avg. ?50 100 200 ?55 10 v dd = 32 vdc, i dq = 1600 ma 8k mode ofdm, 64 qam data carrier modulation, 5 symbols ?60 f = 860 mhz 560 mhz 760 mhz 660 mhz v dd = 32 vdc, p out = 60 w (avg.) i dq = 1600 ma, 8k mode ofdm 64 qam data carrier modulation, 5 symbols
mrf6p3300hr3 MRF6P3300HR5 17 rf device data freescale semiconductor typical cw broadband characteristics figure 41. cw power gain versus output power 16 26 5 f = 560 mhz p out , output power (watts) cw 24 20 100 500 g ps , power gain (db) 22 18 10 660 mhz v dd = 32 vdc, i dq = 1600 ma 760 mhz 860 mhz 470 mhz d , drain efficiency (%) figure 42. cw drain efficiency versus output power 0 70 3 p out , output power (watts) cw 60 40 30 100 500 50 20 10 v dd = 32 vdc, i dq = 1600 ma 10 f = 660 mhz 560 mhz 760 mhz 860 mhz 470 mhz
18 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 typical cw broadband characteristics figure 43. pulse cw output power versus input power @ 470 mhz 33 57 29 p in , input power (dbm) v dd = 32 vdc, i dq = 1600 ma pulsed cw, 8 sec(on), 1 msec(off) f = 470 mhz 51 30 31 32 actual ideal 56.5 28 p out , output power (dbm) 55 54 53 52 28.5 p1db = 53.59 dbm (228.67 w) 56 55.5 54.5 53.5 52.5 51.5 29.5 30.5 31.5 32.5 figure 44. pulse cw output power versus input power @ 560 mhz 36 59 30 p in , input power (dbm) v dd = 32 vdc, i dq = 1600 ma pulsed cw, 8 sec(on), 1 msec(off) f = 560 mhz 53 31 32 34 actual ideal 29 p out , output power (dbm) 58 57 55 54 p1db = 54.84 dbm (304.81 w) 33 35 56 p3db = 55.49 dbm (353.76 w) figure 45. pulse cw output power versus input power @ 660 mhz 38 60 p in , input power (dbm) v dd = 32 vdc, i dq = 1600 ma pulsed cw, 8 sec(on), 1 msec(off) f = 660 mhz 51 31 32 34 actual ideal 30 p out , output power (dbm) 58 57 55 54 p1db = 54.04 dbm (253.67 w) 33 35 56 p3db = 54.88 dbm (307.45 w) 59 53 52 36 37 figure 46. pulse cw output power versus input power @ 760 mhz 39 60 p in , input power (dbm) v dd = 32 vdc, i dq = 1600 ma pulsed cw, 8 sec(on), 1 msec(off) f = 760 mhz 51 32 33 35 actual ideal 31 p out , output power (dbm) 58 57 55 54 p1db = 54.56 dbm (286.06 w) 34 36 56 p3db = 55.25 dbm (334.73 w) 59 53 52 37 38 figure 47. pulse cw output power versus input power @ 860 mhz 40 60 p in , input power (dbm) v dd = 32 vdc, i dq = 1600 ma pulsed cw, 8 sec(on), 1 msec(off) f = 860 mhz 52 33 34 36 actual ideal 32 p out , output power (dbm) 58 57 55 54 p1db = 54.82 dbm (303.25 w) 35 37 56 p3db = 55.58 dbm (361.21 w) 59 53 38 39
mrf6p3300hr3 MRF6P3300HR5 19 rf device data freescale semiconductor typical atsc 8vsb broadband characteristics acpr, adjacent channel power ratio (dbc) figure 48. single - carrier atsc 8vsb broadband performance @ 100 watts avg. 15 ?33 f, frequency (mhz) 40 ?23 30 20 ?24 ?25 ?32 400 ?27 d , drain efficiency (%), g ps , power gain (db) g ps acpr v dd = 32 vdc, p out = 100 w (avg.) i dq = 1700 ma, atsc 8vsb 37.5 900 35 25 ?26 d 500 600 700 800 figure 49. single - carrier atsc 8vsb power gain versus output power 17 24 3 f = 560 mhz p out , output power (watts) avg. 23 21 20 100 200 g ps , power gain (db) 22 19 10 660 mhz v dd = 32 vdc, i dq = 1700 ma 760 mhz 860 mhz d , drain efficiency (%) figure 50. single - carrier atsc 8vsb drain efficiency versus output power 0 50 3 p out , output power (watts) avg. 40 30 100 200 20 10 v dd = 32 vdc, i dq = 1700 ma atsc 8vsb 10 f = 660 mhz 560 mhz 760 mhz 860 mhz acpr, adjacent channel power ratio (dbc) figure 51. single - carrier atsc 8vsb acpr versus output power ?40 ?15 3 p out , output power (watts) avg. ?20 100 200 ?25 10 v dd = 32 vdc, i dq = 1700 ma atsc 8vsb ?35 f = 860 mhz 760 mhz 660 mhz 32.5 27.5 22.5 17.5 ?28 ?29 ?30 ?31 470 mhz 18 470 mhz ?30 470 mhz 560 mhz
20 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 typical pal b/g broadband characteristics peak sync (w) figure 52. peak sync, power gain and drain efficiency versus frequency 15 245 f, frequency (mhz) 50 280 40 20 275 270 400 d , drain efficiency (%), g ps , power gain (db) g ps v dd = 32 vdc, i dq = 1500 ma sync compression input = 33%, output = 27% 900 45 30 265 d 500 600 700 800 35 25 260 255 250 peak sync
mrf6p3300hr3 MRF6P3300HR5 21 rf device data freescale semiconductor figure 53. 470 - 860 mhz broadband series equivalent source and load impedance f = 470 mhz f = 860 mhz z load z o = 25 z source f = 470 mhz f = 860 mhz z o = 25 8.86 - j2.87 560 f mhz z source z load 470 510 8.77 - j5.43 8.74 - j4.17 6.09 - j4.37 6.39 - j1.65 6.69 - j2.45 v dd = 32 vdc, i dq = 1600 ma, p out = 270 w pep z source = test circuit impedance as measured from gate to gate, balanced configuration. z load = test circuit impedance as measured from drain to drain, balanced configuration. z source z load input matching network device under test output matching network ? ?+ + 610 660 12.41 - j3.53 10.55 - j2.45 7.36 - j1.95 7.73 - j1.75 6.81 - j10.41 710 760 13.11 - j6.04 11.29 - j10.15 7.95 - j1.20 8.18 - j1.36 7.81 - j1.60 860 3.73 - j9.66 6.94 - j2.49 810
22 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 notes
mrf6p3300hr3 MRF6P3300HR5 23 rf device data freescale semiconductor package dimensions case 375g - 04 issue g ni - 860c3 1 2 34 5 d q g l k 2x h e f c seating plane notes: 1. controlling dimension: inch. 2. interpret dimensions and tolerances per asme y14.5m?1994. 3. dimension h to be measured 0.030 (0.762) away from package body. 4. recommended bolt center dimension of 1.140 (28.96) based on 3m screw. 4x b a t dim a min max min max millimeters 1.335 1.345 33.91 34.16 inches b 0.380 0.390 9.65 9.91 c 0.180 0.224 4.57 5.69 d 0.325 0.335 8.26 8.51 e 0.060 0.070 1.52 1.78 f 0.004 0.006 0.10 0.15 g h 0.097 0.107 2.46 2.72 k 0.135 0.165 3.43 4.19 l n 0.851 0.869 21.62 22.07 q 0.118 0.138 3.00 3.30 r 0.395 0.405 10.03 10.29 style 1: pin 1. drain 2. drain 3. gate 4. gate 5. source 1.100 bsc 0.425 bsc 27.94 bsc 10.8 bsc j 0.2125 bsc 5.397 bsc m 0.852 0.868 21.64 22.05 s 0.394 0.406 10.01 10.31 bbb 0.010 ref 0.25 ref ccc 0.015 ref 0.38 ref m a m bbb b m t m a m bbb b m t b (flange) 4x m a m bbb b m t m a m ccc b m t r (lid) s (insulator) j m a m bbb b m t m a m ccc b m t n (lid) m (insulator) a 4
24 rf device data freescale semiconductor mrf6p3300hr3 MRF6P3300HR5 information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2006. all rights reserved. how to reach us: home page: www.freescale.com e - mail: support@freescale.com usa/europe or locations not listed: freescale semiconductor technical information center, ch370 1300 n. alma school road chandler, arizona 85224 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 support@freescale.com europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) support@freescale.com japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1 - 8 - 1, shimo - meguro, meguro - ku, tokyo 153 - 0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor hong kong ltd. technical information center 2 dai king street tai po industrial estate tai po, n.t., hong kong +800 2666 8080 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 fax: 303 - 675- 2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mrf6p3300h rev. 1, 5/2006


▲Up To Search▲   

 
Price & Availability of MRF6P3300HR5

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X